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Motivation

I Given its dynamical inertia, certain slow modes of global
ocean circulation (e.g., AMO) are expected to be predictable
on the interannual to decadal timescale

From Trenberth & Shea, 2006:

Annual SST anomalies averaged

over the North Atlantic (0 to 60

N, 0 to 80 W) for 1870–2005,

relative to 1901–1970 (C)

I A pre-requisite to using the “extended predictability of slow
modes” is a successful assimilation of data to estimate the
state of the ocean including the phase and amplitude of the
slow modes.

I Given recent improvements in methodology and other reasons,
we have chosen to develop an ensemble DA system for POP
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Atlantic Multi-decadal Oscillation
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Atlantic Multi-decadal Oscillation
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Assimilation Algorithm I

For ob. yob with ob+representation error σob,
and given prior ensemble y = h(xm) (bold: ensemble vector)
m = 1, . . . , state dim. Use least squares:

I Compute posterior spread: 1
σ2

po
= 1

σ2
pr

+ 1
σ2

ob

I Compute posterior ensemble mean:
ypo

σ2
po

=
ypr

σ2
pr

+ yob

σ2
ob

I Compute ob. incr. for ensemble members (shift & compact):
∆y = ypo − ypr +

σpo

σpr
∆ypr

I Regress ob. incr. onto state variable incr.
∆xm = β(y, xm)∆y
where β(y, xm) = cov(y, xm)/σ2

pr

I xm,po = xm,pr + β(y, xm)
(
ypo − ypr

)
I ∆xm,po = ∆xm,pr + β(y, xm)

σpo

σpr
h (∆xm,pr )
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Assimilation Algorithm II

(From Anderson & Collins, 2007)
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Assimilation Algorithm III

Tippet et al., 2003 compare 3 deterministic SRFs
ETKF: Za = Zf T = Zf C (Γ + 1)−1/2 (16)

EAKF: Za = AZf = Zf C (1 + Γ)−1/2 G−1FTZf (20)

From the point of view of flow instabilities,
there are important differences:

I Analysis perturbations in ETKF are linear combinations of
(ens. no. of) forecast perturbations (each state vector
component is similarly reconstituted/recombined.)

I Different state vector components of ensemble perturbation
scale differently with EAKF (the adjustment matrix is of size
state dim x state dim.)

I ∆xm,po = ∆xm,pr + β(y, xm)
σpo

σpr
h (∆xm,pr )
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Spatio-Temporally Adaptive Inflation in DART

I Use yob, y, and σob via Bayes theorem
to improve λ(xm, t) [Anderson, 2009]

I Prior PDF for λ(xm) is multivariate normal.
Sequentially update each inflation factor

I Assume cov(λ(xm1), λ(xm2)) = cov(xm1 , xm2)

I No time evolution of inflation factor (Persistence)

I Assuming no bias, obtain posterior mean of λ using
approximations in Bayes formula; hold σλ fixed
N(λpo , σ

2
λ) = 1√

2πθ
exp

(
−D2/2θ2

)
N(λpr , σ

2
λ) where

D = |ypr − yob| and θ =
√
λpoσ2

pr + σ2
ob
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Setup of the DA Experiment

I LANL POP with Data Assimilation Research Testbed
[Anderson et al., 2009]

I Corrected CORE (Coordinated Ocean-ice Reference
Experiment) version 2 Interannual Forcing
[Large and Yeager, 2009, Griffies et al., 2009]

I Weak salinity restoring; strong SST restoring under ice

I 20 member ensemble with spatiotemporally adaptive inflation
[Anderson, 2009]; localization radius of 1100 km

I ICs from Jan 1 of different years of a control run
with Normal Year Forcing

I World Ocean Database observations starting Jan 1, 1990

I An identical control ensemble run, but with no assimilation
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Analysis of 1990-91 DA Experiment I

DA system performs poorly with too few obs. (< 10%) being
contained in the ensemble
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Analysis of 1990-91 DA Experiment II

Time-avgd difference wrt NOAA OI SST v2 Left: Control Run;
Right: Assimilation Run. Cold bias in tropics and midlatitudes and
warm bias at high latitudes and upwelling regions. No Significant
Improvement with DA.
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Analysis of 1990-91 DA Experiment III

Area-weighted Mean Absolute Error of the monthly-averaged SST
anomaly for Jan 1990 through April 1991. In effect, no net
reduction in error is seen with respect to the control.
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Improvements to the DA System

I Enhance spread (S) based on background variability (σ):
S → (1− c)S + cσ

I Analogous to hybrid methods to boost rank of the forecast error covariance matrix: Boost

under-estimated, ensemble-based, flow-dependent covariance with an a priori, background estimate.

I Simple bias correction (not yet analyzed)
I Significant improvements in performance of DA system

I Larger number of obs. contained
I Significant reduction in SST errors
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I Simple bias correction (not yet analyzed)
I Significant improvements in performance of DA system

I Larger number of obs. contained
I Significant reduction in SST errors

About 60% obs. used com-
pared to < 10% previously
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Improved Assimilation I

Time-avgd. difference wrt NOAA OI SST V2 Left: Same Control
Ensemble Run; Right: Assimilation Run with Improvements.
Significant Improvement over Control Ensemble.
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Improved Assimilation II

Area-weighted Mean Absolute Error of the monthly-averaged SST
anomaly for Jan 1990 through April 1991. Significant reduction in
error with respect to control ensemble.
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Avg. inflation factors for pot. temp. at surface (top right)
and depths of 1000 m (bottom left) and 3200 m
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Hindcast

Faster loss in skill over first six months, followed by a slower decay
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Conclusions

I Modifying spread to include a small fraction of background
variability can be useful to improving ensemble diversity

I Analogous to hybrid methods to boost rank of the forecast
error covariance matrix.

I While the most serious disadvantage may seem to be a
deleterious effect on the spread-skill relation, hindcasts using
the ensemble-mean assimilated state shows significant skill

We were able to successfully assimilate WOD observations
using an ensemble filter and only a small ensemble.
Improved initialization shows skill
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Dependence on Amplitude of Specified Background
Variability
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